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1 Functional Analysis

We will now embark into the land of function spaces. This will be based in part on these notes:
https://www.stat.cmu.edu/~larry/=sml/functionspaces.pdf

• Function spaces are simply vector spaces where the elements of your vector space are functions.

• You can think of Rd as equivalent (homomorphic) to a function space, where the space consists
of linear functions of d variables (i.e. for all w ∈ Rd, we can create a bijection to the function
f(x) = x⊤w)

• Typicaly, we want to find the best function in a function space that fits the data. However,
we don’t want to simply interpolate all the data—we want a function that behaves “nicely”.

• All the characteristics of a vector space carry over to the function space

• Function space have a basis, i.e. f =
∑

i αibi where bi are basis functions.

• We can define an inner product between functions, such as ⟨f, g⟩ =
∫ 1
0 f(x)g(x)dx

• The inner product then induces a norm, ∥f∥2 = ⟨f, f⟩.

• Functions are orthogonal if ⟨f, g⟩ = 0.

• An orthonormal basis for a function space satisfies norm 1 and orthogonality.

• We can consider subspaces of a function space, its orthogonal complement, and projections
onto a subspace.

2 Hilbert Space

• To define a Hilbert space, we need to define the notion of completeness.

• Intuitively, completeness means that as 2 points get closer and closer together, they converge
to some point.

• A sequence x1, x2, . . . is a Cauchy sequence if ∥xm − xn∥ → 0 as m,n → ∞.

• Cauchy sequences represent the notion that 2 “points” get closer and closer together.

• A space is complete if every Cauchy sequence converges to a limit.
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• Example of an incomplete space: The space of continuous functions C[0, 1] with the norm
∥f∥22 =

∫ 1
0 |f(x)|2dx. Then, consider the sequence

fn(x) =


−1 if x ∈ [0, 1/2− 2−n]

(x− 1
2) · 2

n

1 if x ∈ [1/2 + 2−n, 1]

The limit of this sequence is the discontinuous function f(x) =

{
−1 if x ∈ [0, 1/2]

1 if x ∈ (1/2, 1]

• This limit is what the 2 “points” converge to

• A complete inner product space is a Hilbert space

• A complete vector space with a norm is called a Banach space.

• Every inner product space defines an induced norm, therefore every Hilbert space is a Banach
space

• However, not every Banach space is a Hilbert space. For example, the supremum norm
∥f∥ = supx f(x) can not be given by an inner product.

• Example: Rd with the standard inner product ⟨u, v⟩ =
∑

i viwi is a Hilbert space.

• Example: the set of square integrable functions f ∈ L2(a, b) = {f : ∥f∥2 < ∞}, i.e. functions
such that

∫ b
a f(x)2dx < ∞ and inner product ⟨f, g⟩ =

∫ b
a f(x)g(x)dx, is a Hilbert space.

• One can generalize the L2[a, b] space of functions to arbitrary p-norm where ∥f∥pp =
∫ b
a |f(x)|pdx

and say Lp(a, b) = {f : ∥f∥p < ∞}

• For L2(a, b), we can get a countable orthonormal basis ϕ1, ϕ2, . . . such that ∥ϕj∥ = 1 for all
j and intbaϕi(x)ϕj(x)dx = 0 for i ̸= j. Then, every square integrable function can be written
as the sum of basis functions f =

∑
i αiϕi.

• Example: Fourier basis on [0, 1] is ϕ1(x) = 1, and

ϕ2j(x) =
1√
2
cos(2jπx), ϕ2j+1(x) =

1√
2
sin(2jπx)

• Example: Cosine basis on [0, 1] is ϕ0(x) = 1 and

ϕj(x) =
√
2 cos(2πjx)

3 Kernels

We can define a class of smooth functions using a construct called a kernel.

• A Mercer kernel is a continuous function K : X × X → R such that
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1. K(x, y) = K(y, x)

2. K is positive semidefinite, i.e.

N∑
i=1

N∑
j=1

K(xi, xj)cicj ≥ 0

for all finite set of points x1, . . . , xN and real numbers c1, . . . , cN . This can be written
as c⊤K(X)c for all c ∈ RN and kernel matrices K(X) where K(X)ij = K(xi, xj). In
other words, the kernel matrix is a positive semidefinite matrix.

• Example: Gaussian kernel, K(x, y) = exp
(
−∥x−y∥2

σ2

)
• An aside for Eigenfunctions: Let K : X × X → R be symmetric and K(x, y) < ∞. Consider
the linear operator TK : L2(X ) → L2(X ) where [TKf ](x) =

∫
X K(x, y)f(y). You can think

of this as smoothing f(x) around x where the weight of f(y) for f(x) is given by K(x, y).

• Suppose TK is positive semidefinite, i.e.
∫
X
∫
X f(x)K(x, y)f(y)dxdy ≥ 0 for any f ∈ L2(X ).

Let λi,Ψi be eigenfunctions and eigenvectors of Tk, i.e.

TKΨi = λiΨi ⇔
∫
X
K(x, y)Ψi(y)dy = λiΨi(x)

Then,
∑

i λi < ∞, supxΨi(x) < ∞, and

K(x, y) =
∑
i

λiΨi(x)Ψi(y)

This representation is known as Mercer’s Theorem.

• If K1,K2 are Mercer kernels, then so are K(x, y) =

1. K1(x, y) +K2(x, y)

2. cK1(x, y) for c ≥ 0

3. K1(x, y) + c for c ≥ 0

4. K1(x, y)K2(x, y)

5. f(x)f(y) for f : X → R
6. K1(x, y)

d

7. exp(K1(x, y))

4 Reproducing Kernel Hilbert Space

• Let K(x, y) be a kernel, and let Kx(·) = K(x, ·) be the kernel with the first argument fixed.

• Note Kx(y) = K(x, y)

• Consider the set of all possible linear combinations of the kernel:

H0 = {f : f =
∑
j

αjKxj}

3



• For this set of functions, let f =
∑

i αiKxi and g =
∑

j βjKyj . Then we can define an inner
product as

⟨f, g⟩ =
∑
i

∑
j

αiβjK(xi, yj)

with the usual induced norm ∥f∥ =
√
⟨f, f⟩

• The completion of H0 with respect to this norm is a Hilbert space called the RKHS generated
by K, or HK .

• An RKHS is named after the reproducing property

• That is, let HK be an RKHS of functions from a domain X to R. Then, for every x ∈ X ,
there exists a function δx such that for all f ∈ HK ,

f(x) =
∑
i

αiKxi(x) =
∑
i

αiK(xi, x) = ⟨f,Kx⟩

where the inner product comes from taking g = Kx

• In other words, the inner product of a function with Kx evaluates that function at x.

• This also implies that ⟨Kx,Ky⟩ = Kx(y) = K(x, y). K is called the reproducing kernel. Kx

is called the representer.

• You can check that this is a well-defined Hilbert space, i.e.

– ⟨f, g⟩ = ⟨g, f⟩
– ⟨cf + dg, h⟩ = c⟨f, h⟩+ c⟨g, h⟩
– ⟨f, f⟩ = 0 iff f = 0

• To verify the last one, suppose ⟨f, f⟩ = 0. Pick any x. Then, using Cauchy-Schwarz,

0 ≤ f(x)2 = ⟨f,Kx⟩2 = ⟨f,Kx⟩⟨f,Kx⟩ ≤ ∥f∥2∥Kx∥2 = ⟨f, f⟩∥Kx∥2 = 0

Therefore 0 ≤ f(x)2 ≤ 0 ⇒ f(x) = 0

• Evaluation functional: δx assigns a real number to each function, defined as δxf = f(x)

• In an RKHS, the evaluation functional is δxf = ⟨f,Kx⟩ = f(x) from the reproducing property

• Theorem: A Hilbert space is an RKHS if and only if the evaluation functionals are continuous

• Continuous means that if fn → f , then δxfn → δxf .

• This is not always true: Let f(x) = 0 and fn(x) =
√
n1[x < 1/n2]. Then, ∥fn − f∥ = ∥fn∥ =√∫

fn(x)2dx =

√∫ 1/n2

0 n = 1√
n

→ 0. However, δ0fn =
√
n which does not converge to

δ0f = 0. This is because a Hilbert space in general can contain very unsmooth functions.

• Every RKHS has a unique reproducing kernel. Moore-Aronszajn states that every PD func-
tion K(·, ·) defines a unique RKHS with K as its reproducing kernel.

• We have no assumption on the domain X .
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5 Representer Theorem

We will now prove a representer theorem. There are many representer theorems—we will prove
a general version from https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/8.

pdf.

Theorem 1. Fix a kernel k and let H be the corresponding RKHS. Let Ω : R → R be a non-
decreasing function and let the SVM optimization problem be expressed as

J(f∗) = min
f∈H

J(f) =
∑
i

ℓ(f(xi), yi) + Ω(∥f∥2H

Then, the solution can be expressed as

f∗ =

N∑
i=1

αik(xi, ·)

Furthermore, if Ω is strictly increasing, then all solutions have this form.

We will do in in the following steps:

1. First, we will use orthogonality to show that Ω is a fuction of the sum of norms in the span
and the complement of the span of kernels.

2. Second, we will use the reproducing property to rewrite f(xi) as an inner product in the
Hilbert space, and in particular the span of the kernels.

3. Therefore, any minimizer will necessarily eliminate the orthogonal component, resulting in
the global solution laying in the span of the kernels.

For step one, consider the subspace

U = span{k(xi, ·) : i ∈ (1, . . . , N)}

Let f be any function. Then we can project f onto this subspace and its orthogonal complement:

f = fs + f⊥

Since these spaces are orthogonal, we have

∥f∥2 = ∥fs∥2 + ∥f⊥∥2

To see this, let b1, . . . , bk be a basis for S and c1, . . . ck be a basis for the complement of S. Then,

∥f∥2 = ⟨fs + f⊥, fs + f⊥⟩ = ∥fs∥2 + ∥f⊥∥2 + 2⟨fs, f⊥⟩

and note that the last term is zero since

⟨fs, f⊥⟩ = ⟨
∑
i

αibi,
∑
j

βjcj⟩ =
∑
ij

⟨bicj⟩ = 0
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Therefore, since Ω is non-decreasing,

Ω(∥f∥H∥2) ≥ Ω(∥fs∥2H)

which means for any f , Ω can be made smaller when f lands in the subspace fs.

For step two, use the reproducing property to conclude that

f(xi) = ⟨f, k(xi, ·)⟩ = ⟨fS , k(xi, ·)⟩+ ⟨f⊥, k(xi, ·)⟩ = ⟨fs, k(xi, ·)⟩ = fs(xi)

Therefore,
∑

i ℓ(f(xi), yi) =
∑

i ℓ(fs(xi), yi) only depends on fs.

For the third step, note that the loss only depends on fs (i.e. it is independent of the orthogonal
subspace), and that the regularizer is minimized if f lies within S. Therefore, J(f) is minimized if
f lies within S and we can express f∗(x) =

∑
i αik(xi, x) as a sum of the basis vectors of H.
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