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Attribution. These notes are extremely similar to the beginning lectures of Larry Wasserman’s
Intermediate Statistics course from CMU (https://www.stat.cmu.edu/~larry/=stat705/), with
some slight notation tweaks to match the course.

1 Concentration Basics

Recall our goal of generalization:
IP)(~Remp(f; X, Y) - Rtrue(f) < 6) > 1- 5
where

Remp (£, X,Y) = - 37 407 (w1,)

and
Rtrue(f) = Ex,y [E(f(x)v y)]

In other words, we want the empirical average to be close to the mean. This is called concentration,
i.e. the empirical mean concentrates around the true mean.

1.1 Coin flips

Instead of risk, let’s consider a much simpler example. Suppose I toss a fair coin n times, and
record z; = 1 if heads and x; = 0 otherwise. Consider the average,

It is easy to see that E[jiny] = 1/2. How far away is iy from its expectation? For example, if x; = 1
for all N flips, then iy = 1 and it is very far.

Concentration of measure phenomenon says that finy “concentrates” closer to E[iy], i.e.

The average of N i.i.d. variables concentrates within an interval of length roughly 1/4/N around
the mean.

o Intuitively, if the average is far from the expectation, then many independent variables need
to work together which is extremely unlikely.
e The concentration result is actually stronger: iy has an approximately Normal distribution.

e This result underlies pretty much all of statistics and machine learning.


https://www.stat.cmu.edu/~larry/=stat705/

1.2 Tail inequalities

e Markov’s inequality: for positive random variable x > 0 and E[X] = 1 < oo then

P(XZt)§/Z:0<1>

e Very crude, but no distributional assumption, only non-negativity and finite mean!

e “If mean is small, then it is unlikely to be large.”

e Proof: basic probability
E[X] = / xp(x)dx > / xp(x)dz > t/ p(x)dx = tP(X > t)
0 ¢ t

e Chebyshev’s inequality: for random variable X with finite variance V(X) = o2, for any ¢t > 0
we have

1 1
POX -2 t0) < 5 =0 ()

e Proof: apply Markov’s inequality

EIX —u] 1
P(X —pl| = to) :P(|X_:u’2 27520'2) < T 22 g2

With more assumptions (finite variance) we can get a better rate 1/t2 instead of 1/t.

Weak Law of Large Numbers (almost). Returning to iy = & >.; X; (i.e. the coin flip
example), note that this has mean p and variance o2/N. Apply Chebyshev’s inequality to fiy and

we get:
P (| B to < 1
HN Kl = \/N = 12
So, with probability at least 0.99 (i.e. by taking 1/t2 = 0.01 for ¢ = 10), then the average is within
100 /v/N of the expectation. This is something called the Weak Law of Large Numbers. The key

property is the ﬁ behavior, with better refinements having dramatically better constants than
10.

e Chernoff Method: introduce a parameter ¢ and an exponential function to refine the Cheby-
shev inequality.
e For any ¢t > 0, we have that

Elexp(t(X — p))]

P((X —p) > u) =P (exp(t(X — p)) > exp(tu)) < exp(tu)

by applying Markov’s inequality.



e Chernoff’s bound:

P(X -2 0) < inf E[exifféffu; 2)

where b is such that E[exp(¢X)] (the moment generating function, or mgf) is finite for all
t <b.

e This can be rewritten as

P((X =) > u) < inf exp(~t(u + o) Elexp(tX))

which is now in terms of the MGF.
Aside: The moment generating function is called such because it can be used to “generate” all the

“moments” (i.e. the expected value of Xt for all integer powers of ¢). Simply write out the Taylor
series as

2 X2 2E[X?
51 +... | =1+tE[X] + 2[, ]+

Mx(t) =E[exp(tX)]|=E |1 +tX +
Then differentiate i times with respect to ¢ and set ¢ = 0 to get the ith moment (i.e. E[X?]).
Fun fact: the form of the MGF specifies the entire distribution (i.e. if you know the MGF then
there is only one density it could be). This proof is a bit more technical and can be found in “An
Introduction to Probability Theory and Its Applications, Vol. 2”7 by Feller using Laplace transform
theory.

e MGF of a standard normal N(0,1):

T 2

1 1
mx(t) = Elexp(tX)] = /eXp(tx)2e_§x2 _ /et:c—égﬂdx

Completing the square gets us

21 e—%:ﬂ—i—tm—ét?—l—éﬂ:/ 1 —%(:c—t)Q—i-%th 12
s

—e T = e2
2

Example: Gaussian tail bound. Suppose X ~ N (u,0?). Then, if Z is standard Normal, then
X =07 + p. Then,

Elexp(tX)] = Elexp(t(cZ + p))] = Elexp(toZ) exp(tu)] = exp(tpu)myz(to) = exp(tp + %t%j)

To apply Chernoff’s bound, we compute the minimum over all ¢:

: 1y o . 1,
nf exp(—t(u + 1)) exp(tp + 5t°0%) = inf exp(—tu + St0”)

which is minimized at ¢ = %

Plug this in to get
u?  u? u?

P(X —p)>u) < eXp(—ﬁ + ﬁ) = exp(—ﬁ)



This is a one-sided tail bound. Combining with the other side of the tail bound

2

u
P (X —pl > u) < 2exp(—5 )

This bound is much tighter than Chebyshevs. For i = % > Xi, where X; ~ N(u,0?%), we
have fi ~ N (p,0%/N).

Then, the Gaussian tail bound for this where u = to /v/N is

2
P (i — ul > t0/VR) < 2exp(~)

Compare to the WLLN variant from before:

Aside: Both bounds say the deviation goes down at LN However, Gaussian tail bound goes down

with exponentially fast. Previously Chebyshev told us with probaiblity 0.99, the average is within
100/ Vv/N. With the exponential tail bound, with probabilty 0.99 we have that the average is within

V/2In(1/0.005)0 /v N = 3.250 /N

More generally, Chebyshev says:

o
f e T
==
whereas Gaussian tails tell us
=l < 21n(2/9)
nw—plso T

where the first is polynomial in é and the second is logarithmic.

e The previous Gaussian tail inequality actually applies more generally to a class of random
variables known as sub-Gaussian random variables

Intuitively, a sub-Gaussian distribution is one whose tails decay faster than a Gaussian

This includes many of the examples we saw before, such as Bernoulli or Beta

A random variable X with mean p is sub-Gaussian if there exists a ¢ > 0 such that

Elexp(t(X — )] < exp(c®#/2)

Note this upper bound is the same as the Gaussian tail bound with zero mean, i.e.

1 1
Elexp(tX)] < exp(tp + §t202) = exp(itzaQ)

if X has mean zero. .



e Gaussian random variables with variance o2 trivially satisfy this relation as a o-sub-Gaussian
random variable. Hence, the random variable is sub-Gaussian if its moment generating func-
tion is dominated by a Gaussian with variance o2

e You can repeat the same Chernoff procedure for the Gaussian tails to conclude that sub-
Gaussians hve the same two-sided exponetial tail bound (so we won’t repeat it here)

P(IX — p| > u) < 2exp(—u?/(20?))
e Recall that if X1,..., Xy ~ N(u,0?) then >, X; ~ N(p,02/N). We proved this with
properties of Gaussian random variables.
e Similarly, if Xy, ..., X are o-sub-Gaussian, then their average % > Xiiso/ V/N-sub-Gaussian.

e Proof:
Efexp(t( — 11))] = E[exp% S - )]

—HE exp <Hexp 2/2—(3)(p(t2 2/(2N))

and hence it is o/ v/N-sub-Gaussian.

e This directly implies the following two-sided tail bound for the average of sub-Gaussian ran-
dom variables. Plugging it in gets

P(|f — p| > u) < 2exp(—u’N/(20%))
and substituting « = ko /v/N gets the familiar form from the Gaussian two-sided tail bound:

P(|f— p| > ko /VN) < 2exp(—k*/2)

Aside: Recall that the property we really cared about for concentration was that the mass in the tails
shrinks exponentially. This was formalized in the previous section as “faster than a Gaussian”, and
implies an exponentially decaying concentration bound 2 exp(—t®nd2/2) as opposed to the Chebyshev
concentration bound of t%, which only assume finite variance.

e Hoeffding’s bound: a special case of sub-Gaussian random variables is bounded random vari-
ables. This will be our final concentration bound.

e Intuition: if a random variable only takes values within a fixed range of [a, b], then their tails
decay faster than a Gaussian (the tails are zero).

e Bounded random variables are definitely sub-Gaussian, but for what parameter o7
e Example: Rademacher random variable, is {41, —1} with equal probability.

e Then, Rademacher random variables are o = 1-sub-Gaussian:

k _Hk
Elexp(tX)] = %[exp(t) + exp(—t)] = % % +y ( kt!)
k>0 k>0



t2k t2k

< _
(2k)! ~ & 25K

— exp(t2/2)

23

k>0

and therefore we can use the sub-Gaussian tail bound (plug in o = 1).

Can we do this more generally for random variables X that take on values between some
bounded interval [a, b]?

Jensen’s inequality: a useful inequality seen in many places (convex optimization).

Basic 1D definition of convexity: a function g is convex if

glaz + (1 —a)y) < ag(z) + (1 —a)g(y)

for all z,y and « € [0, 1]. Intuitively, this means that any line connecting two points on g lies
above g.

2

Example: g(z) = 2° is convex.

Jensen’s inequality states that for a convex function g : R — R, then
Elg(z)] > g(E[X])

“A linear function before g is at most a linear function after g”

Proof: Let u = E[X], and let L,(x) = ax + b be the tangent line to the function g at p, at
ie. Ly(p) = g(p). By convexity (x), we know that g(x) > L, () at all z. Therefore,

Elg(2)) > EILu(X)] = ElaX + b = a+ b = Lu(s) = g(12)
Proof of (x): WLOG suppose y > x.
glaz + (1 —a)y) < ag(z) + (1 — a)g(y)

glaz + (1= a)y) —g(z) < (o —1)g(z) + (1 — a)g(y)
glaz + (1 = a)y) = g(x) < (1 = a)(g(y) — g(x)
Note that [z + (1 — a)y] — 2 = (1 — a)(y — z) > 0, so divide both sides by this quantity

glaz+ (1 —a)y) —g(=) _ g(y) — g(=)
[ax+(1—a)y—z — y—=x
Take the limit as o — 1 and we get
/ 9(y) —g(x)
g (x) < =

g'(x)(y —z) +g(z) < g(y)

so the tangent line lies below g.

Next: MGF of bounded random variables. Let X have zero mean and takes values on the
bounded interval [a, b].



e Zero mean assumption doesn’t matter (can always subtract the mean and use Y = X — E[X]
instead).

e Let X’ be an independent copy of X. Then using Jensen’s inequalty (and the exponential
function being convex),

Ex (exp(tX)] = Ex (exp(t(X — E[X')] < Ex x(exp(t(X — X))

e Furthemore let € be a Rademacher random variable, then, X — X’ is identical to the dis-
tribution of X’ — X, which is identical to e(X — X’). Then, using the Hoeffding bound for
Rademacher random variables,

Ex (exp(tX)] < Ex x/[exp(t*(X — X')?/2)]

The goal of this step is to make the bound agnostic to whether X > X’ or vice versa. Using
boundedness, we have
Ex(exp(tX)] < exp(t2(b — a)2/2)

and so bounded random variables are (b — a)-sub Gaussian.

e There is a stronger version called Hoeffding’s Lemma which has a denominator of 8 instead
of 2.

e Concentration bound: Suppose Xi,..., Xy are bounded iid random variables with a < X; <
b. Let i = % >; Xi. Then, applying Markov’s followed by the MGF bound, we get

P(p>u)=P <exp <tZXZ-> > exp(tNu)) < e "NUE |exp (Z tXZ->]

—a)?
P > u) < e tNu HE [exp (tX;)] < e N exp(Nt?(b—a)?/2) = exp <N <(b 5 ) - tu))

The RHS is minimized at

th—a)? —u=0=t=

(b—a)?

and so therefore the one sided bound is

Plit 2 u) < exp <N <(b _za)g (b 32@4 RC i)?)) - (_%lfv—uﬁ>

e The two sided bound is thus

P(lal > u) < 2exp (‘M)

e A slightly stronger bound with Hoeffding’s Lemma gives

2Nu?

P(lia| > u) <2exp | ——

(12 ) < 2exp (— s )

Aside: Hoeffding’s Lemma allows us to give concentration inequalities for bounded random variables.

This takes the key idea of a Gaussian for concentration (the exponentially decreasing tails) and

generalizes it to a broad class of random variables (bounded) that makes the concentration inequality
applicable in real-world settings. In many settings, we can assume our data is bounded.



2 Generalization Bound

Finally, we can prove our first generalization bound! We will prove that the empirical estimator
J = argminy Remp(f, X,Y) has true risk close to the true optimal risk.

P (Rtme(f) ~ Rywe(f¥) < e) >1-6

where

Remp(fa X, Y) = ;/vze(f(xuyz))

and
Rtrue(f) = Ex,y [E(f(l‘), y)]

Note this is slightly different from what we looked at earlier, as we want to to match the true
risk of the optimal predictor f* = argmin; Rie(f) with the true risk of the estimated predictor

f=arg min; Remp(f, X,Y). This is an even stronger statement.

To start, we can decompose the difference in risk into three parts:
[Rerue(f) = Remp(f)] + [Remp(f) = Reanp(f*)] + [Remp (F*) = Rerue(f)]

e The first term is difficult, as f is a random variable that is not i.i.d.
e The second term is < 0 because by definition, f minimizes the empirical risk.

e The third term is an i.i.d. sum since f* is deterministic.

To prove generalization, we’ll use a concept known as uniform bounds. Upper bounding with
absolute values we get

Risue(f) = Rirue(f*) < [Rusue(f) = Reanp (F)] + 0+ | Resp (/) = Rurue (/)]
Rtrue(f) — Rirue(f*) < Sl}p | Remp (f) — Rirue(f)] + S?P | Remp (f) — Rirue(f)]
Rruel f) = Rirue(7) < 259 | Renp(£) = Rirue(f)
In other words, we are bounding the excess risk (LHS) with the worst case difference between the

empirical and true risk over all possible functions f. The RHS is sometimes called an empirical
process in statistics. If we can control this, then we can control the generalization error.

Then, our generalization bound becomes

P (Rtrue(f) - Rtrue(f*) > 6) <P (Sl}p |Remp(f) - Rtrue(f)| > ;)



2.1 Generalization for finite function classes, |F| < co

We will now prove the following: If a function class is finite, |F| < oo, and loss is bounded
(0 < ¢ < B), then we have

. <Rtme(f) Rl < B\/zlog@f\) +210g5—1> s

n

The proof has three main steps.

1. Hoeffding’s inequality and since the loss is bounded, we know that
€ Né?
P (’Remp(f) - Rtrue(f)‘ > 5) < 2€Xp (2_B2>

2. Finite function class assumption with union bound:

) = P | U {IRemp() = Birue( )] = 5 }

f

N

P <Sljl”p | Remp (f) — Rirue(f)] =
<>r ({IRemp () = Bume(1)] = 5})

Ne?

3. Finally, connect the uniform convergence bound back to generalization to get

|

)

(Rtrue(f) Rtrue(f*) > f) <P (Sl}p |Remp(f) - Rtrue(f)| >
Né?
< 2|F|exp <2BQ>
Setting this equal to J and solving for € we get
2B?
62 = T lOg(2|]:|(S_1)

Plugging this in we get

-1
2log(2|F]|) +2logd ) <5

n

(Rtrue(f) Rtrue(f*) 2 B\/

which recovers the end result.
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