
CIS3990-002: Mathematics of Machine Learning Fall 2023

Lecture: Multivariate Calculus

Date: November 6th, 2023 Author: Eric Wong

1 Calculus Basics

An important question in machine learning is “Why does my training algorithm work and how
long will it take?” As most machine learning problems can be framed as an optimization problem,
theoretical convergence rates in optimization will answer this problem. For example, recall that we
typically minimize the empirical risk (often referred to as the objective in optimization):

min
θ

Remp(fθ) = min
θ

∑
i

ℓ(fθ(xi), yi)

and that we often use something called an optimizer to solve this minimization problem, such as
stochastic gradient descent. Since stochastic gradient descent has randomness, it is not guaranteed
to always improve the objective. So first of all, why does stochastic gradient descent work if it’s
not always guaranteed to make an improvement? And second, how long does it take for such an
optimizer to find a good solution? To answer why it works, we’ll show that gradient descent will
eventually converge to something close to the right answer. To answer how long, we’ll characterize
this by the number of steps that the optimizer needs to take to get some distance away from the
optimal solution. This will be a result of the form

R(fθ)−R(f∗) ∈ O(1/
√
T )

for stochastic gradient descent. Compare this with O(1/T ) for standard gradient descent. This
tells us that the penalty for using random gradients instead of exact gradients is a factor of 1√

T
. In

other words, to get ϵ error, SGD requires 1
ϵ2

steps whereas GD requires 1
ϵ steps.

To understand the optimization aspects of machine learning, we’ll need to work with calculus thanks
to all the gradients and approximations. The proof for SGD will be a combination of the linear
algebra and probability from the previous two modules, with the calculus on the current module.
Therefore, we’ll begin our review of calculus with the univariate case.

• The derivative of f at x is defined as the limit

∂f

∂x
= lim

h→0+

f(x+ h)− f(x)

h

This is the direction of steepest ascent.

• Example: f(x) = xn, then

∂f

∂x
= lim

h→0+

(x+ h)n − f(x)n

h
= lim

h→0+

∑n
i=0

(
n
i

)
xn−ihi − xn

h

= lim
h→0+

n∑
i=1

(
n

i

)
xn−ihi−1 = nxn−1

1



• Derivatives are useful for representing a function as an infinite sum of approximations around
a single point. A Taylor polynomial of degree n of f at x0 is

Tn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

where f (k)(x0) is the kth derivative evaluated at x0.

• For a smooth function f ∈ C∞, a Taylor series of f at x0 is the infinite Taylor polynomial

T∞(x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)

k

• Differentiation rules. Let f ′ be the derivative of f . Then,

1. Product rule: (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)

2. Quotient rule:
(
f(x)
g(x)

)′
= f ′(x)g(x)−f(x)g′(x)

g(x)2

3. Sum rule: (f(x) + g(x))′ = f ′(x) + g′(x)

4. Chain rule: (g(f(x)))′ = (g ◦ f)′(x) = g′(f(x))f ′(x)

These are helpful for univariate calculus. However, machine learning problems are typically multi-
variate (think pixels or words in an sentence). Therefore, we need to comfortable with multivariate
calculus.

• Suppose f : Rn → R. If x = (x1, . . . , xn) then the partial derivatives are

∂f

∂xi
= lim

h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x)

h

for i = 1, . . . , n. Typically we can collect this into a single row vector called the Jacobian,

∇xf =
df

dx
=

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
∈ Rn

We put it into a row vector because if we have a function f(x) = (f1(x), . . . , fm(x)) with
multiple outputs, we stack these as rows

∇xf =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

 ∈ Rm×n

• Example: Let f(x1, x2) = x21x2 + x1x
3
2. Then,

∂f(x1, x2)

∂x1
= 2x1x2 + x32

∂f(x1, x2)

∂x2
= x21 + 3x1x

2
2

2



• Rules for partial differentiation with one output:

1. Product rule: ∂
∂x(f(x)g(x)) =

∂f
∂xg(x) + f(x) ∂g∂x

2. Sum rule: ∂
∂x(f(x) + g(x)) = ∂f

∂x + ∂g
∂x

3. Chain rule: ∂
∂x(g ◦ f)(x) =

∂
∂x(g(f(x))) =

∂g
∂f(x)

∂f
∂x .

• In the last example, we assumed that f has one output. What if the intermediate function
has more than one output?

• Example: Consider f : R2 → R and x1(t), x2(t) are both functions of t. Then

df

dt
=

[
df

dx1
,
df

dx2

] [
dx1
dt
dx2
dt

]
• In other words,

d

dt
f(x(t)) =

∑
i

df

dxi

dxi
dt

The above was done for scalar valued functions. We can generalize all of the above to multiple
outputs, i.e. vector valued functions.

• Suppose f : Rn → Rm, where f(x) =

 f1(x)
...

fm(x)

 ∈ Rm. Then, df
dxi

=


f1
dxi
...

fm
dxi

.
• We can stack this altogether for all input derivatives to get

df

dx
=


f1
dx1

· · · f1
dxn

...
fm
dx1

· · · fm
dxn


This matrix is called the Jacobian. When f maps onto a scalar, this is the special case from
before (a row vector).

Therefore, we can do derivatives of many outputs (vectors) with respect to many inputs (vectors).
Lastly, we can take this one step further and do derivatives of tensor outputs with respect to tensor
inputs.

• Suppose we have a transformation f : Rm×n → Rp×q, i.e. A = f(B). Then, J = dA
dB ∈

Rm×n×p×q where Jijkl =
dAij

dBkl

• Recall that the set of m × n matrices is isomorphic to the set of mn length vectors, i.e.
Rmtimesn and Rmn are isomorphic. Since the gradient is a linear operator, we can treat
gradients of matrices (or tensors) as equivalent to gradients of vectors.

• For example, we can reshape A and B to be vectors of length mn and pq, and then compute
J ∈ Rmn×pq. Then reshape this back to the tensor form.

3



• Example: let f(R) = R⊤R = K ∈ RN×N where R ∈ Rm×N . What is dK
dR ? We know this is

in RN×N×M×N , lets start with just one output.

dKpq

dR
=

d

dR
r⊤p rq =

d

dR

M∑
m=1

RmpRmq

Therefore, for Rij we have

dKpq

Rij
=

d

dRij

M∑
m=1

RmpRmq =


Riq if j = p, p ̸= q

Rip if j = q, p ̸= q

2Riq if j = p, p = q

0 otherwise

• Section 5.5 has useful identities for computing gradients.

Figure 1: Identities for computing gradients

• Chain rule revisited: recall that if y = f(x) for f : RN → R and x = g(t) for g : R → RN ,
then

∂

∂t
f(g(t) =

∑
i

∂f

∂xi

∂xi
∂t

=
∂f

∂x
· ∂x
∂t

where the former is a row vector (one output) and the latter is a column vector (N outputs).

• This can now be generalized to multiple inputs and multiple outputs by simply replicating the
formula over multiple outputs of f and multiple inputs of g. If f : RM → N and g : RL → RM

4



then
∂f

∂x
· ∂x
∂t

where ∂f
∂x ∈ RN×M and ∂g

∂t ∈ RM×L

The big place where derivatives are used is in backpropagation and automatic differentiation. By
repeatedly applying the chain rule, you can calculate the derivative of any formula. This used to
minimize

min
θ

∑
i

ℓ(fθ(xi), yi)

where we repeat the chain rule over and over again until we get to θ.

• Suppose we have a chain of operations,

y = f(x) = (fK ⊙ fK−1 ⊙ · · · ⊙ f1)(x) = fK(fK−1(· · · (f1(x)) · · · ))

and ℓ(f(x), y) = ∥y − f(x)∥22, where θi is the parameters of the ith function fi. Then,

∂L

∂θK−1
=

∂L

∂fK

∂fK
∂θK−1

∂L

∂θK−2
=

∂L

∂fK

∂fK
∂fK−1

∂K − 1

∂θK−2

and so on. This is the concept driving automatic differentiation.

• Backward mode: We will recursively compute ∂y
∂vi

for all intermediate nodes vi, where vi =
(fi ⊙ · · · ⊙ f1)(x) i.e.

∂y

∂vi
=

∑
j:parent(vi)

∂f

∂vj

∂vj
∂vi

• Forward mode: We will recursively compute ∂vi
∂x for all intermediate nodes vi, i.e.

∂vi
∂x

=
∑

j:child(vi)

∂vi
∂vj

∂vj
∂x

Up to this point, we’ve mostly focused on first-order derivatives. Sometimes we want to use higher
order derivatives. This depends on the optimization algorithm.

Suppose we want to minimize minθ f(θ). Whereas gradient descent only used first-order derivatives,
i.e.

θ(t+1) = θ(t) − α∇f(θ(t))

Other methods like Newton’s method for optimization use higher order derivatives, like

θ(t+1) = θ(t) − α∇2f(θ(t))−1∇f(θ(t))

The second derivative term here ∇2f(θ(t)) is called the Hessian. Let’s look at higher order deriva-
tives in more detail.

5



• First consider a function f : R2 → R of two variables, f(x, y).

• Derivatives are linear operators. Therefore the derivative operator behaves very similarly to
matrices. Furthermore, the order doesn’t matter.

• Examples of higher order derivatives:

1. ∂2f
∂x2 = ∂

∂x
∂f
∂x

2. ∂nf
∂xn = ∂

∂x · · ·
∂f
∂x

3. ∂2f
∂y∂x = ∂

∂y
∂f
∂x = ∂

∂x
∂f
∂y = ∂2f

∂x∂y

• For f(x, y), it can be convenient to write down all the second order derivatives as

H =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2

]

This is called the Hessian matrix and is sometimes denoted as H = ∇2
x,yf(x, y).

• We can do this more generally for functions of more than 2 variables, f : RN → R for
f(x) = f(x1, . . . , xN ):

H =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xN

...
. . .

...
∂2f

∂x1∂xN
· · · ∂2f

∂x2
N


Or equivalently, Hij =

∂2f
∂xi∂xj

• Let’s generalize even further: what if there are multiple outputs for f : RN → RM?

• Same as the Jacobian, we’ll adopt an “outputs first” notation. Recall that the Jacobian
Jij = (∇f)ij = ∂fi

∂xj
, where the first dimension corresponded to the output and the second

dimension corresponded to the partial derivatives.

• Then, the Hessian of f will be an M ×N ×N tensor, where Hijk = (∇2fi)jk where Hi is the
Hessian of the ith output.

Let’s now return to the Taylor series. The Taylor series was a useful tool for approximating a
function as a series of polynomials. For example, the linear approximation of f around x0 was

f(x) ≈ f(x0) + f ′(x0)(x− x0)

How does this all change for functions of more than one variable?

• The gradient is often used for a local linear approximation that looks similar to the uni-variate
case.

f(x) ≈ f(x0) +∇f(x0)(x− x0)

Remember that ∇f(x0) is a row vector (outputs first).

6



• Recall that the full univariate Taylor series was

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)

k

• The multivariate Taylor series is similar:

f(x) =
∞∑
k=0

Dkf(x0)

k!
δk

where you can take Dk to be the kth derivative of f and δ = x− x0

• δk is the outer product of δ done k times, resulting in a tensor of size D×D× · · · ×D where
this is done k times (a kth order array).

• For k = 2, this is
δ2 = δ ⊗ δ = δδ⊤, δ2[i, j] = δ[i]δ[j]

• For k = 3, this is
δ3 = δ ⊗ δ ⊗ δ δ3[i, j, k] = δ[i]δ[j]δ[k]

• In general, this is
δk[i1, . . . , ik] = δ[i1] · · · δ[ik]

• Lastly (this is a fairly big abuse of notation from the textbook) we can collapse the terms
with the usual dot product (sometimes called the Frobenius inner product):

Dkf(x0)δ
k =

∑
i1

· · ·
∑
ik

Dkf(x0)[i1, . . . , ik]δ
k[i1, . . . , ik]

=
∑
i1

· · ·
∑
ik

Dkf(x0)[i1, . . . , ik]δ[i1] · · · δ[ik]

As a recap, Dkf(x0) and δk are both kth order tensors where each dimension has size D.
Note that the input dimension D is different from the derivative operator Dk.

• Examples:

1. k = 0 we have D0f(x0)δ
0 = f(x0) ∈ R

2. k = 1 we have D1f(x0)δ
1 = ∇f(x0)δ ∈ R

3. k = 2 we have D2f(x0)δ
2 = ∇2f(x0)δ

2 = trace(Hδδ⊤) = δ⊤Hδ ∈ R
4. k = 3 we have D3f(x0)δ

3 =
∑

i

∑
j

∑
k D

3f(x0)[i, j, k]δ[i]δ[j]δ[k] ∈ R

What are multivariate Taylor series used for?

• Mainly to create a locally linear approximation of f around x00, i.e.

f(x) ≈ f(x0) +∇f(x0)(x− x0)

which approximates the function f at x0 with a straight line

7



• In iterative optimization methods (like gradient descent), to approximate local regions using
the local linear approximation.

• To minimize f(x0) + ∇f(x0)(x − x0), we simply take a step in the direction of −∇f(x0)
(gradient methods, 1st order optimization) constrained within some radius α (the step size).

• We have to minimize within a radius since a linear function is unbounded otherwise.

• For ℓ2 bounded steps (i.e. ∥x− x0∥2 ≤ α this is equivalent to gradient descent.

• FOr other norms, this is called steepest descent with respect to the ℓp norm:

min
∥x−x0∥p≤α

f(x0) +∇f(x0)(x− x0)

• To minimize f(x0) +∇f(x0)(x− x0) + (x− x0)
⊤∇2f(x0)(x− x0) we can find the root of this

equation since it is a quadratic:

∂

∂x
[f(x0) +∇f(x0)(x− x0) + (x− x0)

⊤∇2f(x0)(x− x0)]

= ∇f(x0)
⊤ +∇2f(x0)(x− x0) = 0 ⇒ x = x0 −∇2f(x0)

−1∇f(x0)
⊤

• In calculating integrals, i.e.

E[f(x)] =
∫

f(x)p(x)dx

can be very complicated even if the distribution p is known i.e. Gaussian. Instead, we can
approximate f(x) with a Taylor series around the mean and integrate that instead.

• Why do we use first-order methods for things like neural network? One reason is because the
number of parameters is so large, computing the Hessian is computationally infeasible.

8


	Calculus Basics

