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The Reliability Stack for Machine Learning

Eric Wong (wongeric@mit.edu)

Machine learning (ML) systems have surpassed humans at a variety of tasks and benchmarks. How-
ever, deployed ML systems must go beyond these fixed settings: in practice, systems need to perform
well in perpetually evolving environments. My research aims to develop the foundations of reliable
systems in order to ensure their successful deployment in dynamic, real world conditions. To realize
this goal, I study the “full stack” of reliability from the ground up: diagnosing problems, specifying
changes, verifying properties, and training for robustness.

Reliable machine learning

State-of-the-art ML systems excel in settings that they were trained on, but can often struggle with un-
foreseen changes in the environment. Indeed, data-driven components for automobiles can perform
poorly in bad weather [18]. Medical diagnosis models are significantly less accurate when deployed in
new hospitals [14, 24]. National infrastructure such as smart grid systems can be unstable under severe
weather or malicious interference [19, 20]. These examples illustrate a general failure of ML systems
to adapt to changes. At the pinnacle of these shortcomings is their virtually non-existent robustness to
worst-case inputs [22, 16]. These issues have driven a demand for more reliable ML systems: systems
that perform consistently across a diverse array of setting. This goes beyond achieving better perfor-
mance and is about building user trust—reliable systems have guarantees of safety/stability, allow for
early detection of problems, and degrade gracefully to changes in the environment. My work has made
progress towards these goals in the following areas:

1. Robustness—In the worst-case robustness setting, targeted changes to the input (attacks) can re-
duce accuracy of ML systems to 0%. There is a long history of researchers proposing new “robust”
models (defenses) that were later shown to be completely ineffective against more advanced at-
tacks [15]. One of the key contributions of my work was to bypass this arms race and develop
provable defenses [1] that formally limit the worst-case performance of a system. My work estab-
lished a principled methodology for creating differentiable guarantees that could be optimized
during training. This line of work set the foundation for formal guarantees of large-scale neural
networks with general architectures [2, 11].

2. Specification—How can we specify the conditions in which ML systems work (or not work)?
Although robustness to noise is commonly studied, noise only capture a small subset of changes
that occur in practice. To rigorously train and evaluate the reliability of systems to real-world
effects, I developed new perturbation sets that go beyond synthetic noise and capture realistic
changes [3, 8]. My work has also formulated a new class of data-driven perturbation sets [7],
which enable specification of observable changes. We can now employ robust training to create
the first models that are adversarially robust to real-world effects learned from data.

3. Debugging—ML systems that achieve top performance can also have hidden defects. To iden-
tify these issues, I developed debugging tools that enable the rapid diagnosis of biases and spurious
correlations in ML systems [10]. These tools allow practitioners to proactively detect and resolve
these flaws before deploying ML systems in the wild. To attain consistent and reliable debug-
ging, my work has also shown how existing tools inject their own fundamental biases into the
debugging process, and ways to mitigate these problems [12].

Beyond reliability, my work has identified how widely accepted guidelines from standard ML sys-
tems may no longer apply to robust ML systems. I showed how overfitting in the robust setting deviates
from standard expectations [5, 6]. This led to surprising results for the field of worst-case robustness
that challenged our basic understanding of generalization for robust models.

Researchers, scientists, and engineers will need ways to debug deficiencies in ML systems, specify
and test the proper desired behavior, and ultimately re-deploy a corrected system. My vision is to
develop the core infrastructure that enables this “reliability stack” across the spectrum of sciences. In the
future, I aim to work with domain experts to understand their desiderata, and create the fundamental
primitives that actualize new specifications and models for real-world robustness beyond standard ML
benchmarks. I will also create new debuggability-centric tools and building blocks that enable us to
both debug and create debuggable ML systems. In the remainder of this statement, I expand on my
past research and future work.
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1 Robustness

ML systems are known to make more errors when inputs deviate from what was seen during training.
The extent of this non-robustness is embodied by adversarial examples, where small, targeted changes
to the input can drastically harm the accuracy of a deep network. Indeed, the fact that a model can
have vastly differing predictions when given two nearly identical inputs indicates that standard deep
learning systems are fundamentally unreliable.

This led to an arms race between “attackers” and “defenders”, where the attackers developed better
techniques to generate adversarial examples, while defenders proposed methods to mitigate this prob-
lem. The burden of proof is heavily stacked against the defenders: an attacker needs to find only one
adversarial example to break the model, while a defender must defend against all potential adversarial
examples. The challenges of learning models that are robust in this worst-case setting became apparent
when the vast majority of proposed defenses were shown to be fundamentally broken with stronger
attacks [15], a trend that continues to occur [23].

One of my key contributions is a series of works [1, 2, 11] that established a principled methodol-
ogy for training and verifying networks that are provably robust to adversarial attacks. This approach
calculated analytical certificates that could guarantee robustness, side-stepping the need for empirical
evaluations. In contrast to previous approaches from formal verification, which were combinatorial in
runtime and limited to small networks, my work had the key insight to compute a tractable upper bound
on the worst-case error rate [1]. Furthermore, this upper bound is differentiable and can be optimized
to create deep networks with provably small worst-case error rates. With this approach, I created the
first provably robust network with unbreakable robustness guarantees against adversarial examples'.
Furthermore, this was the first formally verified convolutional architecture for standard computer vision
benchmarks, which had previously been computationally infeasible to verify. In collaboration with
researchers from Bosch, I used this framework in a real-world, fuel injection setting to create formal
performance specifications of an ML system to sensor noise [4].

Verification approaches for deep learning typically require the network to be simple and small.
However, in practice, deep networks are large and complex with a variety of modules and architec-
tures. In order to train such networks with provable guarantees, I proposed a fully-modular framework
for scalable robust training of general computational graphs [2]. I used this framework to create the first
provably robust networks with popular deep learning components such as residual connections, pool-
ing layers, and batch normalization. My later work built upon this approach to calculate even tighter
upper bounds [11]. To this end, I have created the first GPU-accelerated linear programming solver for
verifying the robustness of standard computer vision models. The solver scales convex programming
well beyond the scope of typical commercial solvers, and produces the tightest bounds for the largest
networks studied in formal verification.

The problem of creating ML systems with worst-case robustness is often framed as a robust opti-
mization problem. This viewpoint is the backbone of most successful provable and empirical defenses.
However, the landscape of robust optimization for deep learning is not well-understood. In my work, I
discovered that adversarial training methods, a popular class of methods for robustly training deep net-
works, exhibit overfitting properties that are surprisingly different from standard training [5, 6]. These
insights overturned commonly-accepted beliefs in adversarial training—by accounting for overfitting,
older techniques originally seen as less effective were as competitive as newer approaches. I used these
insights to drastically reduce robust training time from days to minutes [5], and isolated model selection
as a major contributor to improvements in adversarial robustness [6].

2 Specification

At the core of robustness is the perturbation set—a formal specification of changes that an ML system
should be robust to. Although synthetic noise is a popular choice, it does not cover all the natural
changes that occur in the physical world. The study of reliability must go beyond noise to real-world
changes, such as changing weather conditions or intentional graffiti tampering. However, research has
predominantly focused on the noise model due to its simplicity and accessibility, leaving a significant
disconnect between research and practice for reliable systems.

To bridge this gap, my work pioneered the development of perturbation sets that can formally spec-
ify structured changes beyond the simple noise model. I proposed the Wasserstein perturbation set [3], a

1Concurrent with [21]
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mathematical model for adversarial examples that more naturally captures image transformations such
as rotations and translations. To evaluate and train for robustness to Wasserstein adversarial examples,
I developed a new algorithm for efficient projections onto Wasserstein balls. In later work, I oversaw
the development of semantic perturbation sets for computer vision based on rendering engines [8] as
well as generalizations of robust training to the union of multiple perturbation sets [9].

Despite our best efforts, certain real-world changes can be too complex for even humans to formal-
ize. How can we characterize these challenging variations for robustness when we cannot formally
describe them? I developed the first framework for learning perturbation sets from data, a general
methodology for extracting data-driven specifications [7]. I used this framework to create data-based
perturbation sets that capture real-world changes such as lighting, weather, and corruptions. These per-
turbation sets can generalize to new data, and enable comprehensive robustness evaluations beyond a
fixed test set. Furthermore, my work bridged the gap between adversarial noise and real-world per-
turbations. Indeed, we can now use existing robust training algorithms that were previously seen as
inapplicable to achieve robustness in the real-world.

3 Debugging

A system is only known to be as reliable as the axes used to measure its performance. If we do not
know to check for a particular flaw a priori, an ML system that initially appears to be robust may
severely deteriorate when deployed in new environments. An ideal reliable system can be quickly
and easily debugged to find existing problems before deployment. This way, practitioners can take the
corresponding steps to identify and correct the system.

But how can we diagnose unknown problems in ML systems? One approach is to hope that inter-
pretability tools can reveal these flaws, but the sheer scale and complexity of modern ML systems can
easily overwhelm a human. In my work, I took a different approach and instead modified ML systems
to be debuggable by design [10]. I used tools from statistics and optimization to simplify deep networks
in a way that allows humans to better understand the decision process without significantly compro-
mising performance. With this framework, I showed how we can identify learned biases and spurious
correlations in modern vision and language models, and discovered that “de-biased” language models
were still biased. My work also enabled the creation of counterfactual inputs as well as explanations
for mispredictions. These debugging modes provide usable information that exposes how the model
makes predictions. In order to test and measure the degree to which model debuggability was en-
hanced, in this work, I designed new human experiments that importantly avoided human biases in
the evaluation.

Our ability to debug ML systems is only as good as the tools used to inspect them. However, the
inherent biases in ML systems can also disrupt these same tools. In a study on the impact of missing fea-
tures, I demonstrated how widely-used ML systems can suffer from skewed and incorrect predictions
when features are missing [12]. This has immediate consequences for popular interpretability tools
that toggle features on and off. I showed that applying such tools to biased systems produces expla-
nations that are no better than random explanations. These insights demonstrate how certain models
are inherently more debuggable due to their internal biases. Our understanding of internal biases in
ML systems have implications beyond debugging as well: in recent work, I used this knowledge to
significantly improve robustness against real-world attacks on computer vision systems [13].

4 Future work

The study of reliability for ML systems is a multi-step cycle, where developers continuously identify
issues, update specifications, and correct behaviors of ML systems. While most work in robustness
considers these individual steps in isolation, I aim to build both the core primitives and the connecting
bridges that make this entire “reliability stack” a reality. These foundations for reliable ML will need to
be flexible and general, capable of adapting to a diverse array of applications and conditions. A longer
term goal is to move towards an automatic pipeline that minimizes the need for human intervention
throughout the process. Finally, I plan to use new techniques and methods for debugging models to
more broadly understand the patterns that ML systems learn and how they make decisions.

Capturing real-world changes. The vast majority of work in robustness focuses on mathematically
defined changes or generated datasets. In contrast, my recent work has only scratched the surface for
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learning arbitrary specifications from data, with many avenues for future work. A natural direction is to
explore the domain of data-driven specification beyond static images—what specifications can we learn
from text, audio, or video data? Different domains naturally capture different variations, and present
new modeling and robustness challenges for reliable ML. What are the proper generative models for
capturing variations in different domains, and how can we learn them? What kinds of specifications do
domain experts need, and can we adapt and scale traditional robustness guarantees to these settings? I
hope to collaborate with domain experts and use my broad expertise in verification to enable reliability
specifications for all types of ML systems.

Behind the algorithmic and modeling challenges is the data used to learn real-world variations in the
first place. While ideally we would have access to observations that are labeled with the corresponding
changes, this may be too expensive to collect. Where can we source data that captures natural variations,
and how much data is needed? One potential source is to extract variations from large datasets, and
utilize richer sources of unlabeled data. I plan to investigate new ways to data-mine observations of real-
world changes from large datasets with minimal human supervision. What types of natural variations
already exist in ML datasets? How can we extract or filter out these patterns, and are ML systems robust
to these changes? How can we learn a model of naturally mined variations, and can these models be
used to boost settings beyond robustness?

Debuggability-centric ML. The predominant paradigm for debugging ML systems is to apply
these methods to fully trained, black-box models. Although general in applicability, these methods
on their own are limited in the scope and type of insight that they can provide. This mismatch between
the constraints of ML debugging tools and the complexity of modern ML systems restricts our ability
to understand how a system makes predictions. Instead of directly using these methods to debug ML
systems, which remains a challenging task, a different goal is to instead re-design ML systems from
ground up with debuggability as a core feature.

What parts of the ML pipeline can we expose to the user and simplify without trading off perfor-
mance? What are the basic building blocks that naturally reveal useful information to a human? My
work on using sparse linear layers [10] is only one potential mechanism that can already improve de-
buggability without sacrificing performance. A natural next step is to re-design and sparsify initial
processing layers, to reveal which input features are actually being used for the prediction process.
However, debuggability-centric design can go beyond sparsifying existing system components. Incor-
porating intervention-friendly mechanisms such as causal structures or logical reasoning into our ML
building blocks can unlock new ways to test and troubleshoot model behavior. I aim to continue devel-
oping new primitives for debuggability-centric ML systems: modules for processing complex patterns
that can reveal usable information to the user.

Concluding Remark. Reliability has not always been a priority in machine learning, which has
traditionally measured progress with static, in-distribution test sets. However, the ubiquitous use of
ML has thrust the inconsistencies of modern systems beyond the test set into the limelight. The field
of reliable ML is of considerable practical importance, as scientists and engineers increasingly adopt
data-driven systems and become data scientists. I look forward to tackling these challenges as we work
towards the next generation of systems that we can trust.
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